Threatened and Endangered Species: An Overview of NMFS' Process for Assessing EPA Pesticide Registration Actions Pursuant to the ESA

Loggerhead turtle hatchling

Coho salmon

MCFA ESA Workshop May 24-25, 2011

Shortnose sturgeon

Consultation Activity

Informal:

 Sept 2006 - April 2007: EPA effect determinations for shortnose sturgeon, loggerhead turtle, green turtle, Kemp's ridley turtle, leatherback turtle associated with atrazine use in Chesapeake Bay region.

Formal:

- 2002 2012: EPA registration of 37 active ingredients threatened and endangered Pacific salmonids
 - Batch 1: chlorpyrifos, malathion, diazinon (Nov 2008)
 - Batch 2: carbofuran, carbaryl, methomyl (April 2009)
 - Batch 3: azinphos methyl, dimethoate, phorate, methidathion, naled methyl parathion, disulfoton, fenamiphos, methamidophos, phosmet, ethoprop, bensulide (August 2010)
 - Batch 4: 2,4-D, triclopyr BEE, diuron, linuron, captan, chlorothalonil (June 2011)
 - Batch 5: oryzalin, trifluralin, molinate, thiobencarb, propargite, fenbutatinoxide, diflubenzuron, 1,3-D, lindane, racemic metolachlor, bromoxynil, prometryn, pendimethalin (April 2012)

Purpose of ESA Section 7 Consultation

Each federal agency shall insure that any action authorized, funded, or carried out is not likely to:

Jeopardize T/E species

Result in destruction or adverse modification of designated critical habitat

Entities Involved in FIFRA Consultations

Action Agency:

Consulting Agency:

Applicants:

NOAA/ NMFS/Office of Protected

U.S. EPA/ Office of Pesticide Programs

Resources/ Endangered Species Division

Designated by EPA- Pesticide companies

Scope of Effects

Informal consultations

Purpose: Insure no jeopardy /adverse modification

Product: NLAA concurrence / nonconcurrence

Scale: individual organisms, critical habitat, duration of project

Screening assessment: If NLAA then no jeopardy

ESA Consultation Handbook

- Not likely to adversely affect (NLAA) effects on listed species are expected to be *discountable*, or *insignificant*, or *completely beneficial*.
- Discountable Extremely unlikely to occur... can't measure or detect
- Insignificant should never reach the scale where take occurs.

ESA Consultation Handbook

<u>Take</u>- "to harass, harm, pursue..."

Harm – "any significant habitat modification or degradation that results in death or injury... significantly impairing behavioral patterns such as breeding, feeding, or sheltering"

Harass – "...to significantly disrupt normal behavior patterns which include but are not limited to, breeding, feeding or sheltering"

Scope of Effects (continued)

Informal consultations

Purpose: Insure no jeopardy /adverse modification

Product: NLAA concurrence / nonconcurrence

Scale: individual organisms, critical habitat, duration of project

Screening evaluation: If NLAA then no jeopardy

Formal consultations

Purpose: Insure no jeopardy /adverse modification

Product: Biological Opinion

Scale: individual organisms, critical habitat, population, species

Comprehensive evaluation: includes quantification of amount and extent of take

Handling Uncertainty

Type 1 Error	Type 2 Error
Reject true null hypothesis - Claim an effect when none exists	Accept false null hypothesis- Claim no effect when one exists
Protect Species more than necessary	Protect species less than necessary, even lose species
Lose scientific credibility	Lose practical and scientific credibility
Increase socioeconomic costs more than necessary	Permit activities that should not have been approved

Table adapted from: Science and the Endangered Species Act. Committee on Scientific Issues in the Endangered Species Act. National Research Council. 1995.

How Does NMFS Reach Conclusions in a Biological Opinion? Our process is outlined in the USFWS/NMFS Consultation Handbook (1998) Major sections of a Biological Opinion: Status of the Species Environmental Baseline Effects of the Action Cumulative Effects Integration and Synthesis

Use of Best Scientific and Commercial Data

- 1. Evaluate all scientific and other information to assure reliability and credibility.
- Use primary and original sources as basis for recommendations and document in administrative record.
- 3. Consider quality and relevance of information.

Information Sources Used

- EPA Biological Evaluations (BEs), REDs, science chapters, etc.
- Registrant labels, submitted information
- Peer reviewed literature, gray literature, books
- Monitoring data and other regional and state information

What is the Federal "Action" ?

"any action authorized, carried out, or funded" EPA authorized actions subject to consultation New product registrations (FIFRA section 3) Re-registrations, special review (FIFRA section 4) Special local needs (FIFRA section 24C) Emergency use (FIFRA section 18) Defining the federal action is an important step during the risk assessment planning phase

Federal Action

"Authorization for use or uses described in labeling of a pesticide product containing a particular pesticide active ingredient."

Definition reached at NMFS-USFWS-USEPA meeting 12/12/2007

Deconstruction of the Action

Stressors associated with action based on review of EPA authorized labels
 Active ingredient

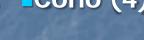
 Metabolites and degradates
 Other ingredients
 Recommended tank mixtures
 Adjuvants

EPA Registered Atrazine Labels (examples from 2006 Greenbook)

Product	% other	Label Recommended
(% atrazine)	Ingredients	Tank Mixes
ATREX 4L	Inerts 56%	s-metolachlor, glyphosate,
(42.6%)	and the state state	alachlor, simazine
Banvel-K-Atrazine	Dicamba 13.42%	cyanizine, simazine, paraquot,
(22.23%)	Inerts 64.35%	EPTC, acetochlor,2,4-D, pendimethalin
Bullet	Alachlor 25.4%	pendimethalin, paraquat, linuron
(14.5%)	Inerts 59.3%	a children and for the
Basis gold	Nicosulfuron 1.34%	dicamba, esfenvalerate,
(82.44%)	Rimsulfuron 1.34%	methomyl
	Inerts 10.54%	
Cinch	s-metolachlor 26.1%	atrazine, paraquat, glyphosate,
(33%)	Inerts 40.2%	simazine,

Description of the Action Information reviewed Labels Where it can be applied (Ag commodities, residential, etc.,) Methods of application, rates, existing restrictions that reduce risk Ingredients Tank mixtures Duration: 15 years- consistent with EPA registration review cycle

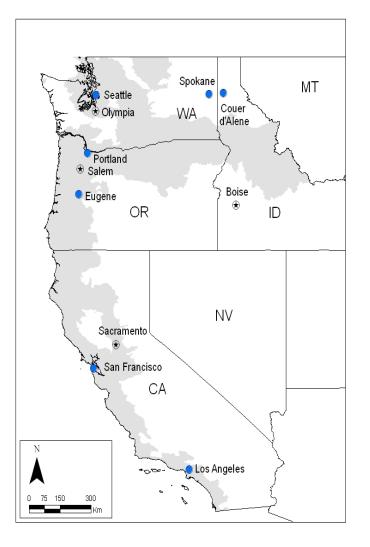
• NMFS evaluated effects to these species in freshwater, estuarine, marine habitats associated with the use of pesticides in WA, OR, CA, and ID.



Chinook (9)

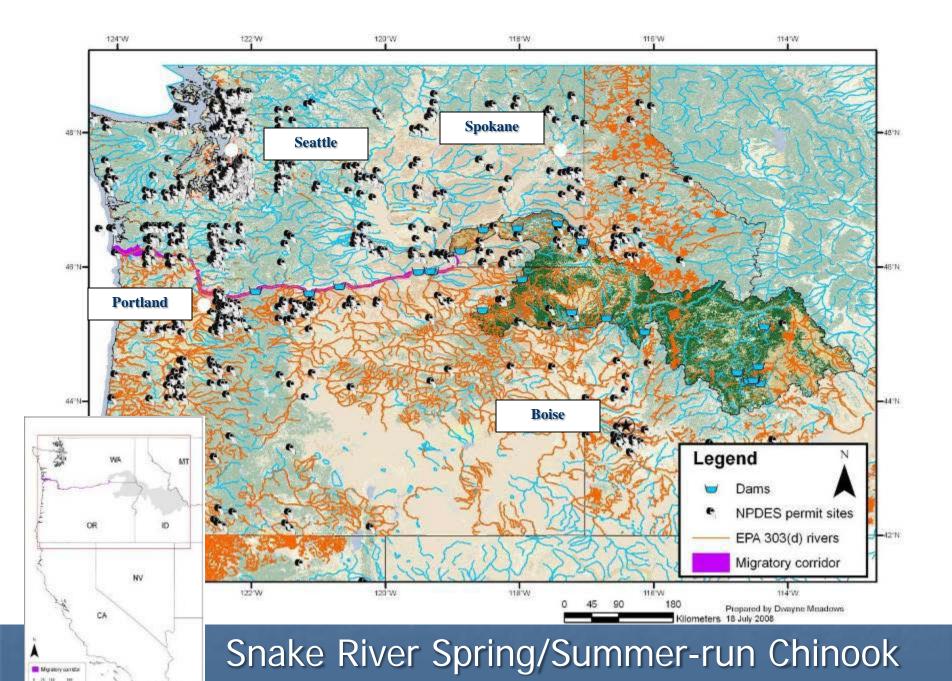
Steelhead (11)

Coho (4)



Chum (2)

Inland distribution of listed Pacific salmonids



Status of the Species

Species life history description Status and distribution Reasons for listing Trends Threats Population Viability Elements Genetic diversity Abundance Productivity Distribution

Environmental Baseline

By regulation, environmental baselines for biological opinions include the past and present impact of all state, Federal or private actions and other human activities in the action area, the anticipated impacts of all proposed Federal projects in the action area that have already undergone formal or early section 7 consultation, and the impact of state or private actions which are contemporaneous with the consultation in process (50 CFR §402.02).

Approach to the Assessment A roadmap for how the analysis is conducted

- Identify stressors that may have direct and indirect effects on environment;
- Characterize exposure to individuals and designated critical habitat;
- Identify risk at the individual level;
- Evaluate risk to species (considering effects of action, condition of environmental baseline, status of the species, and cumulative effects)

Risk Framework

Action Stressors

Pesticide, metabolites, degradates, adjuvants

Exposure Analysis

Response Analysis

Co-occurrence: Stressors & listed resources

Exposure Profile

Effects of Stressors on ESA-listed Species and their habitat

Distribution of individuals

Distribution of habitat

Individual responses

Habitat responses

Response Profile

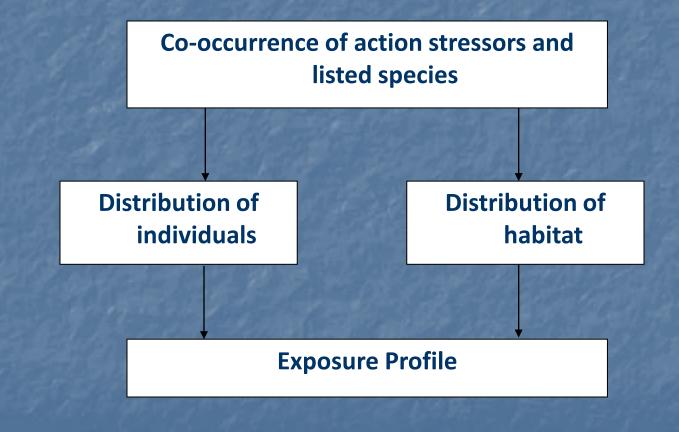
Risk Characterization

Risk Characterization

Effects on individuals

Effects on populations

Effects on species (ESU or DPS)

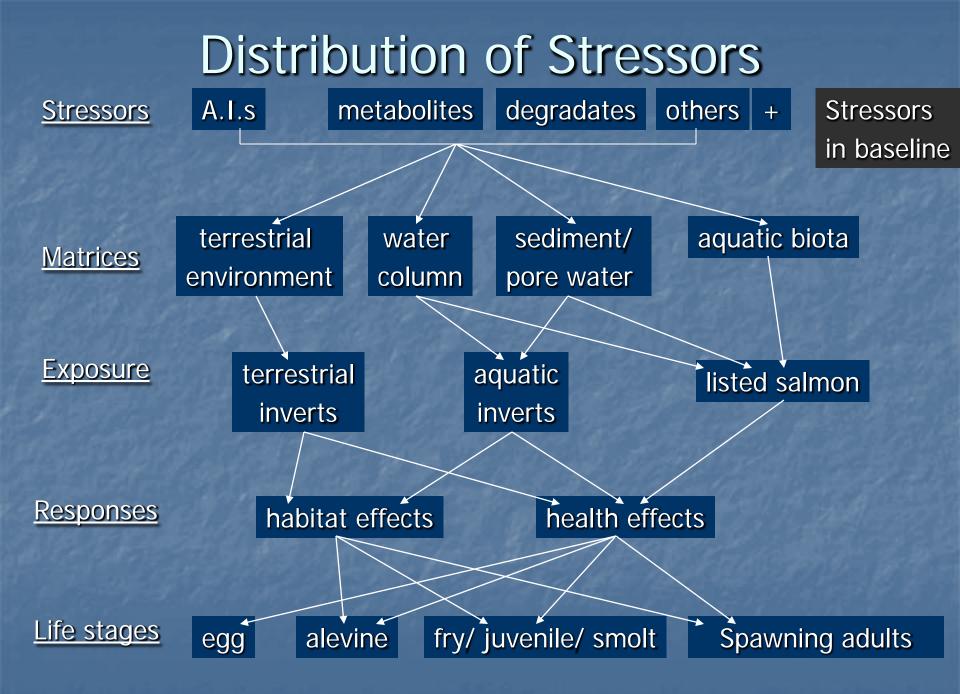

Does EPA insure the actions are not likely to jeopardize the continued existence of the species? Effects on primary constituent elements

Effects of habitat

Effects on conservation value of designated critical habitat

Does EPA insure the actions are not likely to adversely modify or destroy designated critical habitat?

Exposure Analysis

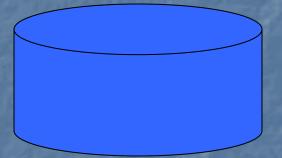


Product Uses

Agricultural crops (crops, noncrop)
Residential (turf, golf course)
Industrial
Rights-of-way
Aquatic weed management
Forestry

Listed Species Information: Life history considerations

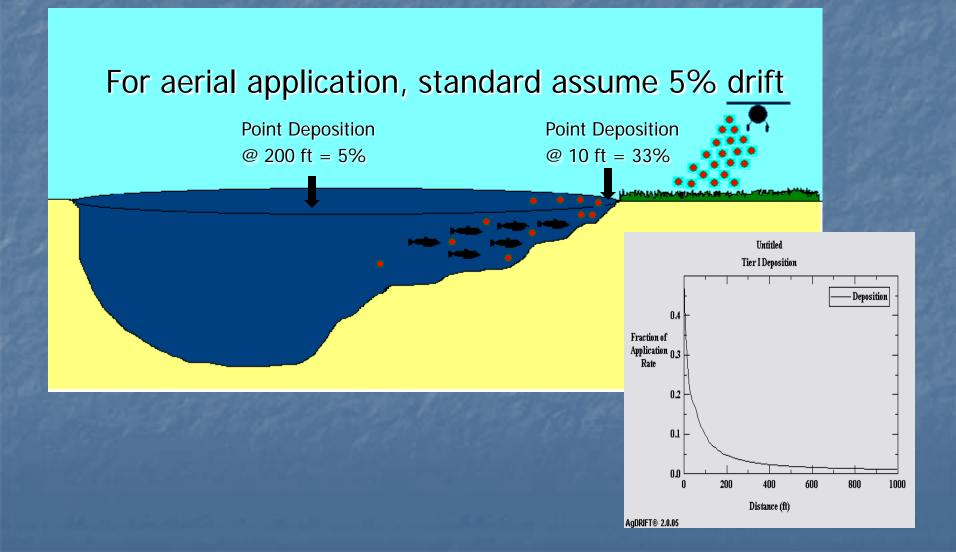
Species (ESUs)	Spawning	Fresh Water Rearing
Chinook (9)	4 distinct runs- spring, fall, summer, winter	Ocean type <1yr Stream type 2 yrs+
Coho (4)	Small coastal tributaries	~ 1.5 years
Chum (2)	Lower reaches of rivers and tributaries	Estuaries & nearshore environments
Sockeye (2)	Lakeshores, inlets/outlets to lakes	intermediate feeding areas along bank, nursery lakes 1-3 yrs
Steelhead (11)	Repeat spawners, in riffle above pools	Variety of habitats, usually 2-3yrs



Exposure Information Evaluated Modeling EPA aquatic species screening estimates NMFS floodplain habitat estimates Monitoring data Ambient water quality data Targeted monitoring

EPA Model Estimates

PRZM-EXAMS, GENEEC


- Characterized as high-end screening tools
- Typically model estimates greater than monitoring values
- Predictive capability depends on site-specific conditions

10 hectare watershed
1 hectare pond, 2 meters deep
Static system

EPA "Farm Pond"

Distribution of Chemicals and Fish

Floodplains and Small Streams

- Habitat for rearing, spawning
- Essential habitat for small fry/juveniles to rear and seek protection from high velocity flows
- Spatially and temporally variable in occurrence, flow, and size
- Restoration focus

AgDrift Estimates for Floodplain Habitats

- AgDrift model develop by pesticide industry task force
- Field-validated model with relatively high predictive capability (Bird et al. 2002)
- Predicts downwind deposition in aquatic habitats from ground and aerial applications
- Assumed small floodplain habitat representative of those used by rearing salmon (2 m wide, 0.1 m deep)
- Does not factor in contributions from other transportation pathways (*e.g.* runoff)
- Does not factor in accumulation from multiple applications or chemical degradation after deposition

Monitoring Data Used

USGS NAWQA monitoring

- California Department of Pesticide Regulation's surface water monitoring database
- Washington State Department of Ecology's EIM monitoring database (Environmental Information Management)
- Oregon Department of Environmental Quality (LASAR database)

Targeted Monitoring Studies

Pesticide Mixtures

- Two or more pesticides are detected in agricultural, urban, and mixed use watersheds more than 90% of the time*
- Monitoring in urban streams across U.S.**
 - Two or more herbicides in 85% samples
 - Two or more insecticides in 54% samples
 - Four or more herbicides were detected in 61% of the water samples.
- Monitoring by WSDA in listed salmonid habitats***
 - urban sites: Averaged 3 pesticides/sample, found up to 9 pesticides in a single sample.
 - Agricultural sites: Averaged 3-5 pesticides/sample, found up to 14 pesticides in a single sample.

Source:

*Gilliom et al. 2006. Pesticides in the nations streams and groundwater, 1991-2001. NAWQA Program Circular 1291. Unites States Geological Service.

**Hoffman et al. 2000. Environmental Toxicology and Chemistry 19:2249-2258.

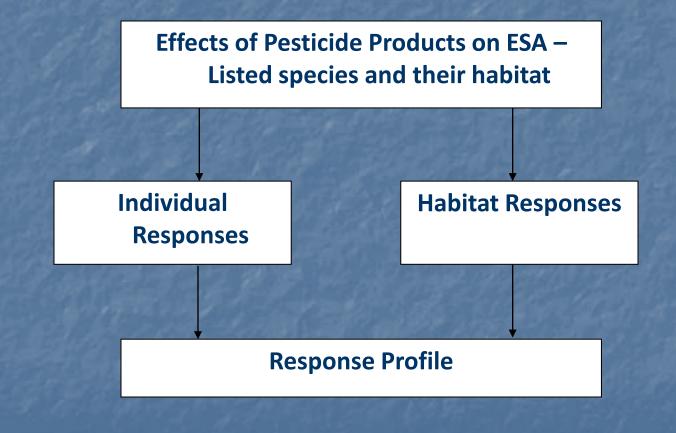
***Burke et al. 2006. Surface water monitoring program for pesticides in salmonid-bearing streams, 2003-2005. WSDOE. Publication no. 06-03-036.

Uncertainty of Exposure to other Action Stressors

Exposure to "other ingredients"

1000's of potential "inerts", some toxic

Exposure to other pesticides: formulation mixtures, tank mixtures, sequential applications
Current and future actual use of pesticides (rates, locations) versus labeled use of pesticides


 Uncertainty regarding exposure is factored into the final conclusion

Handling Uncertainty

Type 1 Error	Type 2 Error
Reject true null hypothesis - Claim an effect when none exists	Accept false null hypothesis- Claim no effect when one exists
Protect Species more than necessary	Protect species less than necessary, even lose species
Lose scientific credibility	Lose practical and scientific credibility
Increase socioeconomic costs more than necessary	Permit activities that should not have been approved

Table adapted from: Science and the Endangered Species Act. Committee on Scientific Issues in the Endangered Species Act. National Research Council. 1995.

Response Analysis

Examples of Salmonid Health Assessment Endpoints

Assessment Endpoints	Assessment Measures
Juvenile growth	Foraging behavior Growth rate Condition index
Reproduction	Courtship behavior Number of eggs produced Fertilization success
Early development	Gastrulation Organogenesis Hatching success
Smoltification	ion exchange (<i>i.e.</i> gill Na ⁺ /K ⁺ ATPase activity) Blood hormone (<i>i.e.</i> thyroxin) Salinity tolerance
Disease-induced mortality	Immunocompetence Pathogen prevalence in tissues Histopathology
Migration or distribution	Use of juvenile rearing habitats Adult homing behavior Selection of spawning sites

Examples of Habitat Assessment Endpoints

Assessment Endpoints	Assessment Measures
Prey availability	Acute and chronic toxicity (LC_{50}) Species abundance (aquatic and terrestrial) Indices of biological integrity (IBIs)
Primary productivity	Macro-algal cover Chlorophyll concentration Dissolved oxygen production
Habitat structure	Sediment grain size (embeddedness) Shelter availability Large woody debris
Riparian function	Plant community composition Allochthonous inputs of organic matter Riparian buffer width
Water quality	Temperature Dissolved oxygen concentration Sediment load

Summarize Effects Data

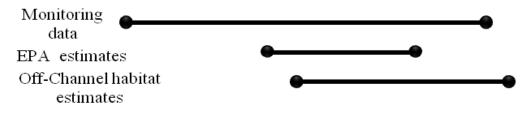
Summarize effects data from EPA's biological evaluations and open literature.
Discuss the relevancy of the effect to our assessment endpoints (growth, survival, etc.)
Score the degree of confidence we have in the observed effect -

- Direct measurement of assessment endpoint
- Appropriate surrogate for listed species
- Well-conducted study

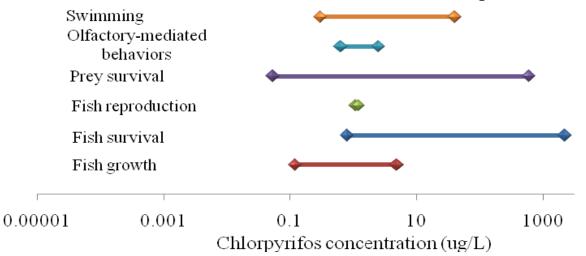
Chlorpyrifos

Assessment Endpoint	Concentration ranges of observed effect (ug/L)	Degree of confidence in effects
Salmonid		
Survival	0.8-2200	High
Growth	0.12-4.8	High
Reproduction	1.09-1.21	High
Swimming	0.3-40	High
Olfactory behaviors	0.625-2.5	High
Habitat		
Prey survival	0.05-600	High

Develop Risk Hypotheses Based on Toxicity Information


 Salmonid lethality from acute exposure Salmonid behavioral impacts (swimming, migration, spawning, predator avoidance) Reduction of salmonid prey Impacts on salmonid growth and reproduction •Mixtures cause additive and synergistic responses •Other action stressors cause adverse effects Baseline stressors contribute to increased responses (temperature, other OPs/CBs)

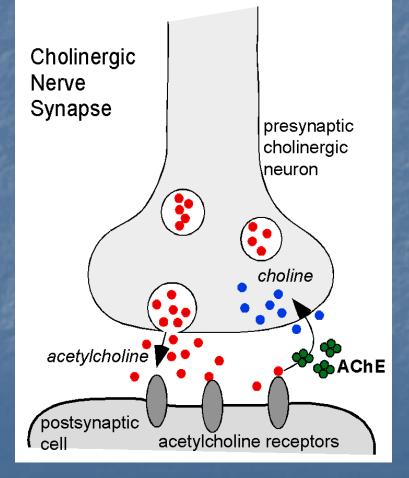
Evaluate Support for Each Risk Hypothesis


If exposure and response information support a risk hypothesis then we evaluate if population level effects likely. If exposure and response information do not support a risk hypothesis then we do not evaluate population level effects. Data uncertainties discussed for each risk hypothesis.

General Overlap of Exposure and Response Concentrations

Chlorpyrifos Exposure Concentrations

Effect Concentrations for Salmonid Assessment Endpoints


First Three Opinions: Nervous System Toxicants

Mode of toxic action:

disrupt
 neurotransmission

 inhibits an enzyme, acetyl-cholinesterase, by binding to it

 Nerve cells continue to fire

Risk Hypothesis: Pesticides with a similar mode of action can act in combination to increase toxicity

CN Carbofuran

Mo Malathion oxon

CL Carbaryl

Co Chlorpyrifos oxon

Do Diazinon oxon

Hypothetical physiological effect threshold

CN Mo CL Co Do exposure to single pesticides exposure to a mixture

Inhibition of cholinesterase

Population modeling

 Risk hypotheses indicated effects to juvenile growth and survival, and prey availability.

 Population models were used to evaluate the impacts on the first year survival of juvenile salmonids from direct lethality and from reductions in growth.

 Results of other non-modeled risk hypotheses also evaluated at the population level included:

- survival of adults
- swimming ability
- olfaction-mediated behaviors
- starvation

Linking the available Information:

- Acute lethality (LC50)
- Slope
- Juvenile survival
- Population growth rate

Not Incorporated:

- Sublethal responses
- Indirect effects
- Mixture toxicity
- Other ingredients
- Baseline stressors

Acute lethality to Juveniles

Environmental concentrations of single active ingredients

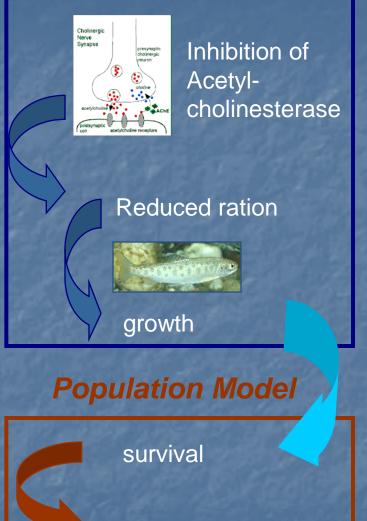
Lethality based on dose-response

Juvenile Survival

Population Model

survival

change in population growth rate (lambda)


Linking the available Information:

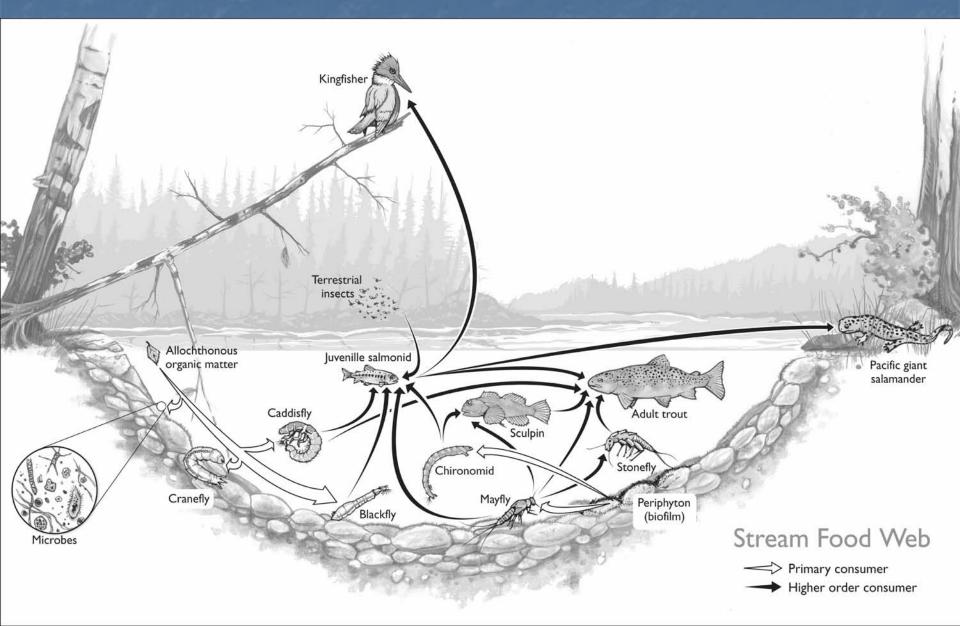
- Reduced prey
- Enzymatic inhibition
- Reduced foraging
- Reduced size
- Juvenile survival
- Population growth rate

Not incorporated:

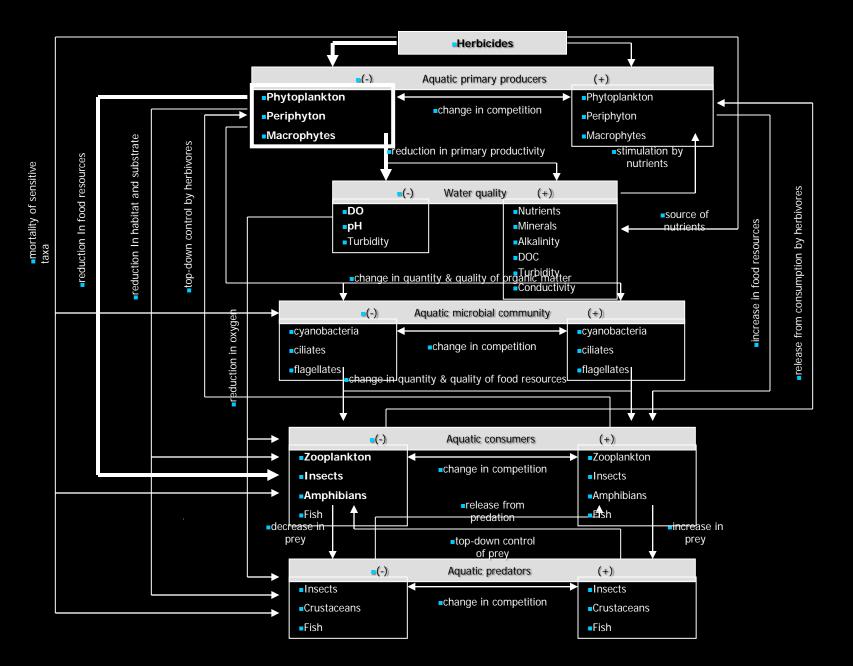
- Lethality to fish
- Mixture toxicity
- Other ingredients
- Baseline stressors

Somatic Growth Model

change in population growth rate (lambda)

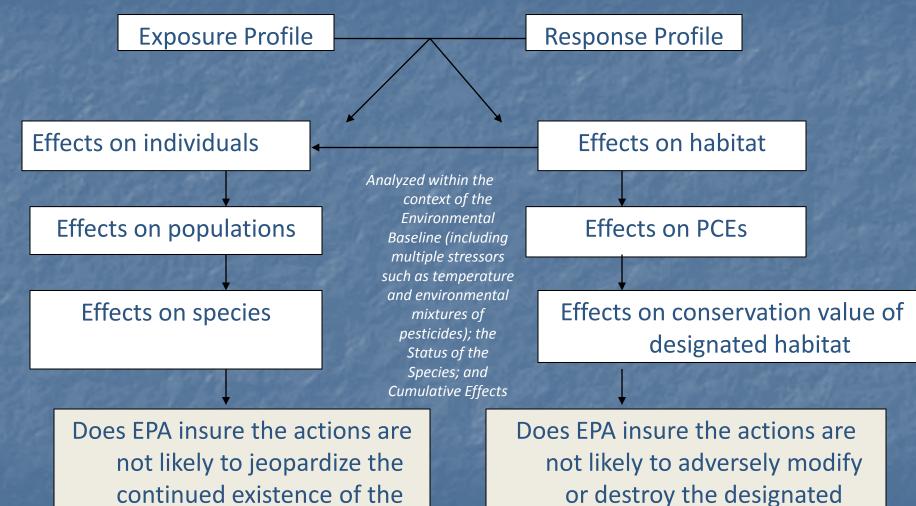

Slide: D. Baldwin

Developed Critical Habitat Risk Hypotheses to Evaluate Effects to Primary Constituent Elements (PCEs)


PCEs

Freshwater spawning sites Freshwater rearing sites Freshwater migration corridors Estuarine and nearshore marine Attributes of PCEs Water quality Substrate Natural cover Prey availability

Freshwater rearing of juvenile salmonids


Restoration of riparian habitat on Lower Elwha River

Integration and Synthesis

- Considers Effect of the Action in the context of Status of the Species, Environmental Baseline, and Cumulative Effects
- Each ESU/DPS and a.i. combination evaluated separately for species and critical habitat
- Factors considered
 - Intensity and distribution of use sites across ESU/DPS
 - Co-occurrence of use sites and salmon habitat
 - Salmon life history
 - Likelihood of individual and population level effects from use of pesticides
 - Exposure to additional stressors not related to action
 - Population trends and relative importance of populations within ESUs/DPSs

Integration and Synthesis

species?

critical habitat?

Reasonable and Prudent Alternatives

Alternatives to the action that NMFS concludes are necessary to reduce the likelihood of jeopardy to species or adverse mod to designated critical habitat Developed in coordination with the action agency within the scope of the action agency's legal authority and jurisdiction economically and technologically feasible NMFS RPA elements rely on: Conventional risk reduction measures for pesticides Chemical-specific risk reduction measures

Reasonable and Prudent Alternatives: Examples from NMFS Opinions

Elements with required label amendments to reduce exposure from pesticide runoff and drift: *windspeed restrictions; soil moisture restrictions; chemical-specific buffers to salmonid habitat*

Elements with provisions for EPA to develop risk reduction measures: *pesticide-specific maximum concentration limits; risk reduction plan to be approved by NMFS*

Effectiveness monitoring elements: mortality incident reporting; floodplain habitat monitoring Terms and Conditions To minimize the impact of take

- 1. Label instructions not to apply pesticide products:
 - 1. when wind speeds exceed 10 mph, or
 - 2. when storm events are likely to produce runoff
- 2. Label instructions for reporting fish kills
- 3. EPA annual reporting requirementaquatic incidents classified as probable or highly probable

Completed consultations and related information: www.nmfs.noaa.gov/pr/consultation/pesticides.htm